

Guru Nanak Institutions Technical Campus (A)

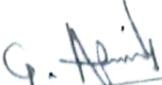
School of Engineering and Technology

B.Tech. in COMPUTER SCIENCE AND ENGINEERING (Data Science)

COURSE STRUCTURE-II YEAR (R22 Regulations)

Applicable from AY 2022-23 Batch

II YEAR I SEMESTER


S. No.	Course Code	Course Title	L	T	P	Credits
1	22ES0Eco2	Digital Electronics	3	0	0	3
2	22PC0DS01	Data Structures	3	0	0	3
3	22BS0MA05	Computer Oriented Statistical Methods	3	1	0	4
4	22PC0DS02	Computer Organization and Architecture	3	0	0	3
5	22PC0DS03	Object Oriented Programming through Java	3	0	0	3
6	22PC0DS04	Data Structures Lab	0	0	3	1.5
7	22PC0DS05	Object Oriented Programming through Java Lab	0	0	3	1.5
8	*MC22MCDEN04	Gender Sensitization Lab	0	0	2	0
9	22SD0DS01	Data visualization- R Programming/ Power BI	0	0	2	1
			Total	15	1	10
						20

II YEAR II SEMESTER

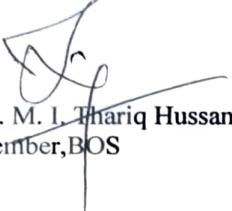
S. No.	Course Code	Course Title	L	T	P	Credits
1	22PC0DS06	Discrete Mathematics	3	0	0	3
2	22SS0MB01	Business Economics & Financial Analysis	3	0	0	3
3	22PC0DS07	Operating Systems	3	0	0	3
4	22PC0DS08	Database Management Systems	3	0	0	3
5	22PC0DS09	Software Engineering	3	0	0	3
6	22PC0DS10	Operating Systems Lab	0	0	2	1
7	22PC0DS11	Database Management Systems Lab	0	0	2	1
8	22PK0DS01	Real-time Project / Field Based Project	0	0	4	2
9	*MC22MCDEN01	Constitution of India	3	0	0	0
10	22SD0DS02	Full Stack Development	0	0	2	1
			Total	18	0	10
						20

Dr. Ch. Subbukkshmi
Chairman-BOS

Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee



Mr. Roop Kumar Raju
Member,BOS

Dr. K Venkata Rao
Member,BOS

Dr. Rishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. J. Thariq Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

DATA STRUCTURES

B.Tech. II Year I Sem.

L T P C
3 0 0 3

Prerequisites: Programming for Problem Solving

Course Objectives

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks- Operations, array and linked representations of stacks, stack applications, Queues- operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing- linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V

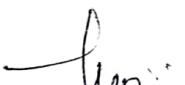
Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
2. Data Structures using C – A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan,Cengage Learning.



Dr. Ch. Subbalakshmi
Chairman-BOS

Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee

Mr. Roop Kumar Raju
Member,BOS

Dr. K Venkata Rao
Member,BOS

Dr. Kishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. I. Thariq Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

COMPUTER ORGANIZATION AND ARCHITECTURE

B.Tech. II Year I Sem.

L T P C
3 0 0 3

Co-requisite: A Course on “Digital Electronics”.

Course Objectives

- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Course Outcomes

- Understand the basics of instruction sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II

Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating

– point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT - IV

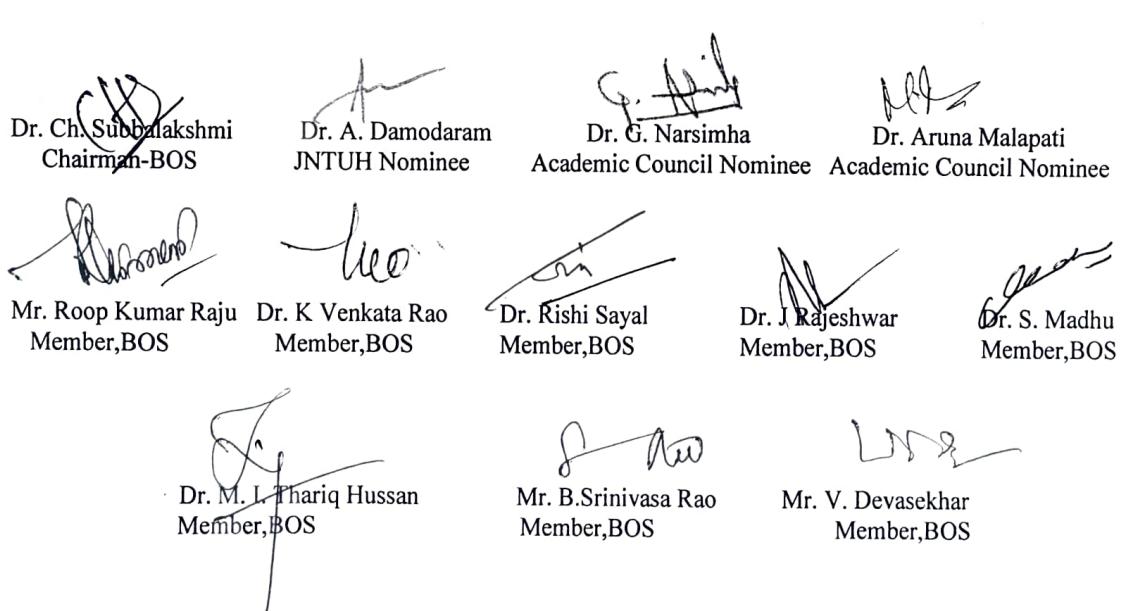
Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, CacheMemory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.


Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

TEXT BOOK:

1. Computer System Architecture – M. Morris Mano, Third Edition, Pearson/PHI.

REFERENCE BOOKS:

1. Computer Organization – Carl Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGrawHill.
2. Computer Organization and Architecture – William Stallings Sixth Edition, Pearson/PHI.
3. Structured Computer Organization – Andrew S. Tanenbaum, 4 th Edition, PHI/Pearson.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year I Sem.

L T P C
3 0 0 3

Course Objectives

- To Understand the basic object-oriented programming concepts and apply them in problemsolving.
- To Illustrate inheritance concepts for reusing the program.
- To Demonstrate multitasking by using multiple threads and event handling
- To Develop data-centric applications using JDBC.
- To Understand the basics of java console and GUI based programming

Course Outcomes

- Demonstrate the behavior of programs involving the basic programming constructs like controlstructures, constructors, string handling and garbage collection.
- Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using extend and implement keywords
- Use multithreading concepts to develop inter process communication.
- Understand the process of graphical user interface design and implementation using AWT or swing.
- Develop applets that interact abundantly with the client environment and deploy on the server.

UNIT - I

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT - II

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III

Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception subclasses. String handling, Exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations, generics.

UNIT - IV

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, checkbox groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT - V

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

TEXT BOOKS:

1. Java the complete reference, 7th edition, Herbert schildt, TMH.
2. Understanding OOP with Java, updated edition, T. Budd, Pearson education.

REFERENCE BOOKS:

1. An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John wiley& sons.
2. An Introduction to OOP, third edition, T. Budd, Pearson education.
3. Introduction to Java programming, Y. Daniel Liang, Pearson education.
4. An introduction to Java programming and object-oriented application development, R.A.Johnson- Thomson.
5. Core Java 2, Vol 1, Fundamentals, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education.
6. Core Java 2, Vol 2, Advanced Features, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education
7. Object Oriented Programming with Java, R.Buyya, S.T.Selvi, X.Chu, TMH.
8. Java and Object Orientation, an introduction, John Hunt, second edition, Springer.
9. Maurach's Beginning Java2 JDK 5, SPD.

Dr. Ch. Subbarakshmi
Chairman-BOS

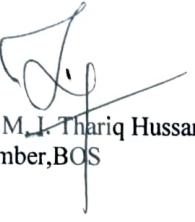
Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

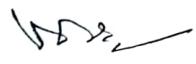
Dr. Aruna Malapati
Academic Council Nominee

Mr. Roop Kumar Raju
Member,BOS

Dr. K Venkata Rao
Member,BOS


Dr. Rishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS


Dr. S. Madhu
Member,BOS

Dr. M. I. Thariq Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

DATA STRUCTURES LAB

B.Tech. II Year I Sem.

L T P C
0 0 3 1.5

Prerequisites: A Course on “Programming for problem solving”.

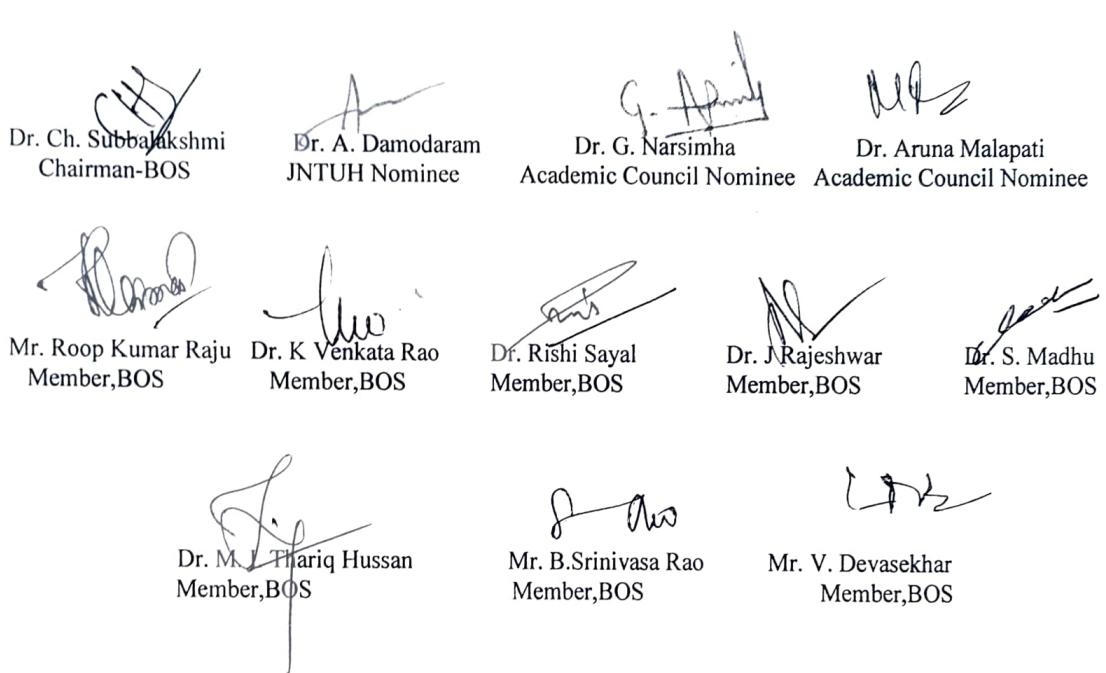
Course Objectives:

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments:


1. Write a program that uses functions to perform the following operations on singly linkedlist.:
i) Creation ii) Insertion iii) Deletion iv) Traversal
2. Write a program that uses functions to perform the following operations on doubly linkedlist.:
i) Creation ii) Insertion iii) Deletion iv) Traversal
3. Write a program that uses functions to perform the following operations on circular linkedlist.:
i) Creation ii) Insertion iii) Deletion iv) Traversal
4. Write a program that implement stack (its operations) using
i) Arrays ii) Pointers
5. Write a program that implement Queue (its operations) using
i) Arrays ii) Pointers
6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
i) Quick sort ii) Heap sort iii) Merge sort
7. Write a program to implement the tree traversal methods(Recursive and Non Recursive).
8. Write a program to implement
i) Binary Search tree ii) B Trees iii) B+ Trees iv)
AVL trees v) Red - Black trees
9. Write a program to implement the graph traversal methods.
10. Implement a Pattern matching algorithms using Boyer- Moore, Knuth-Morris-Pratt

TEXT BOOKS:

1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan AndersonFreed, Universities Press.
2. Data Structures using C – A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/PearsonEducation.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan,Cengage Learning.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB

B.Tech. II Year I Sem.

**L T P C
0 0 3 1.5**

Course Objectives:

- To write programs using abstract classes.
- To write programs for solving real world problems using the java collection framework.
- To write multithreaded programs.
- To write GUI programs using swing controls in Java.
- To introduce java compiler and eclipse platform.
- To impart hands-on experience with java programming.

Course Outcomes:

- Able to write programs for solving real world problems using the java collection framework.
- Able to write programs using abstract classes.
- Able to write multithreaded programs.
- Able to write GUI programs using swing controls in Java.

Note:

1. Use LINUX and MySQL for the Lab Experiments. Though not mandatory, encourage the use of the Eclipse platform.
2. The list suggests the minimum program set. Hence, the concerned staff is requested to add more problems to the list as needed.

List of Experiments:

1. Use Eclipse or Net bean platform and acquaint yourself with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
2. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -, *, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
3. A) Develop an applet in Java that displays a simple message.
B) Develop an applet in Java that receives an integer in one text field, and computes its factorial value and returns it in another text field, when the button named “Compute” is clicked.
4. Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the

program would throw an Arithmetic Exception. Display the exception in a message dialog box.

5. Write a Java program that implements a multi-thread application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.

6. Write a Java program for the following: Create a doubly linked list of elements.

Delete a given element from the above list. Display the contents of the list after deletion.

7. Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with “Stop” or “Ready” or “Go” should appear above the buttons in the selected color. Initially, there is no message shown.

8. Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.

9. Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas.

Write a java program to display the table using Labels in Grid Layout.

10. Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes).

11. Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (\t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint: use hash tables).

12. Write a Java program that correctly implements the producer – consumer problem using the concept of inter thread communication.

13. Write a Java program to list all the files in a directory including the files present in all its subdirectories.

REFERENCE BOOKS:

1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education.
2. Thinking in Java, Bruce Eckel, Pearson Education.
3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning.
4. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, Pearson.

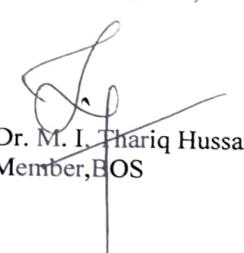
Dr. Ch. Subbalakshmi
Chairman-BOS

Dr. A. Damodaram
JNTUH Nominee

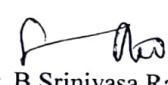
Dr. G. Narsimha
Academic Council Nominee



Dr. Aruna Malapati
Academic Council Nominee



Mr. Roop Kumar Raju
Member,BOS



Dr. K Venkata Rao
Member,BOS

Dr. Rishi Sayal
Member,BOS

Dr. T Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. I. Thariq Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

DATA VISUALIZATION - R PROGRAMMING/ POWER BI

B.Tech. II Year I Sem.

L T P C
0 0 2 1

Course Objectives:

- Effective use of Business Intelligence (BI) technology (Tableau) to apply data visualization
- To discern patterns and relationships in the data.
- To build Dashboard applications.
- To communicate the results clearly and concisely.
- To be able to work with different formats of data sets.

Course Outcomes: At the end of the course a student should be able to

- Understand How to import data into Tableau.
- Understand Tableau concepts of Dimensions and Measures.
- Develop Programs and understand how to map Visual Layouts and Graphical Properties.
- Create a Dashboard that links multiple visualizations.
- Use graphical user interfaces to create Frames for providing solutions to real worldproblems.

Lab Problems:

1. Understanding Data, What is data, where to find data, Foundations for building Data Visualizations,Creating Your First visualization?
2. Getting started with Tableau Software using Data file formats, connecting your Data to Tableau,creating basic charts (line, bar charts, Tree maps), Using the Show me panel.
3. Tableau Calculations, Overview of SUM, AVR, and Aggregate features, Creating custom calculationsand fields.
4. Applying new data calculations to your visualizations, Formatting Visualizations, Formatting Toolsand Menus, Formatting specific parts of the view.
5. Editing and Formatting Axes, Manipulating Data in Tableau data, Pivoting Tableau data.
6. Structuring your data, Sorting and filtering Tableau data, Pivoting Tableau data.
7. Advanced Visualization Tools: Using Filters, Using the Detail panel, using the Size panels,customizing filters, Using and Customizing tooltips, Formatting your data with colors.
8. Creating Dashboards & Storytelling, creating your first dashboard and Story, Design for different displays, adding interactivity to your Dashboard, Distributing & Publishing your Visualization.
9. Tableau file types, publishing to Tableau Online, Sharing your visualizations, printing, and Exporting.

10. Creating custom charts, cyclical data and circular area charts, Dual Axis charts.

REFERENCE BOOKS:

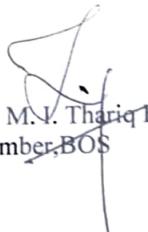
1. Microsoft Power BI cookbook, Brett Powell, 2nd edition.
2. R Programming for Data Science by Roger D. Peng (References)
3. The Art of R Programming by Norman Matloff Cengage Learning India.

Dr. Ch. Subbalakshmi
Chairman-BOS

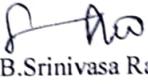
Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee



Mr. Roop Kumar Raju
Member,BOS



Dr. K Venkata Rao
Member,BOS

Dr. Rishi Sayal
Member,BOS

Dr. M. Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M.V. Thariq Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

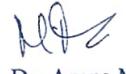
Mr. V. Devasekhar
Member,BOS

Guru Nanak Institutions Technical Campus (A)
School of Engineering and Technology

B.Tech. in COMPUTER SCIENCE AND ENGINEERING (Data Science)

COURSE STRUCTURE-II YEAR (R22 Regulations)

Applicable from AY 2022-23 Batch


II YEAR II SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credit s
1	22PCODS06	Discrete Mathematics	3	0	0	3
2	22SSOMB01	Business Economics & Financial Analysis	3	0	0	3
3	22PCODS07	Operating Systems	3	0	0	3
4	22PCODS08	Database Management Systems	3	0	0	3
5	22PCODS09	Software Engineering	3	0	0	3
6	22PCODS10	Operating Systems Lab	0	0	2	1
7	22PCODS11	Database Management Systems Lab	0	0	2	1
8	22PRODS01	Real-time Research Project/ Societal Related Project	0	0	4	2
9	22mcomb01	Constitution of India	3	0	0	0
10	22SDODS02	Full Stack Development	0	0	2	1
		Total	18	0	10	20

Dr. Ch. Subbalakshmi
Chairman-BOS

Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee



Mr. Roop Kumar Raju
Member,BOS

Dr. K Venkata Rao
Member,BOS

Dr. Rishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. I. Tharin Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

DISCRETE MATHEMATICS

B.Tech. II Year II Sem.

L T P C
3 0 0 3

Course Objectives:

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes:

- Understand and construct precise mathematical proofs
- Apply logic and set theory to formulate precise statements
- Analyze and solve counting problems on finite and discrete structures
- Describe and manipulate sequences
- Apply graph theory in solving computing problems

UNIT - I

Mathematical logic: Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.

UNIT - III

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as Partially Ordered Sets, Boolean Algebra.

UNIT - IV

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions, Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion.

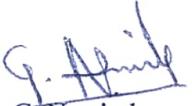
UNIT - V

Graph Theory: Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multi-graphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

TEXT BOOKS:

1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe L. Mott, Abraham Kandel, Theodore P. Baker, Prentis Hall of India, 2nd ed.

REFERENCE BOOKS:

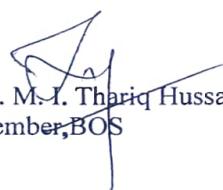

1. Discrete and Combinatorial Mathematics - an applied introduction: Ralph P. Grimaldi, Pearson Education, 5th edition.
2. Discrete Mathematical Structures: Thomas Koshy, Tata McGraw Hill publishing co.

Dr. Ch. Subba Lakshmi
Chairman-BOS

Mr. Roop Kumar Raju
Member,BOS

Dr. A. Damodaram
JNTUH Nominee

Dr. K Venkata Rao
Member,BOS



Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee

Dr. Rishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. I. Thariq Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

OPERATING SYSTEMS

PREREQUISITES

- A course on “Computer Programming and Data Structures”.
- A course on “Computer Organization and Architecture”.

COURSE OBJECTIVES

- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

COURSE OUTCOMES

CO1: Able to control access to a computer and the files that may be shared

CO2: Demonstrate the knowledge of the components of computers and their respective roles in computing.

CO3: Ability to recognize and resolve user problems with standard operating environments.

CO4: Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

SYLLABUS

UNIT - I

Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls

Process - Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads

UNIT - II

CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple-Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III

Process Management and Synchronization - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors

Interprocess Communication Mechanisms: IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

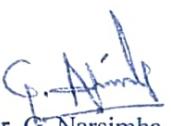
Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT - V

File System Interface and Operations - Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, lseek, stat, ioctl system calls.

Case Study IPC related Process: Pipes, Message Queues, Shared Memory, Semaphore

TEXT BOOKS


1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS

1. Operating Systems - Internals and Design Principles, William Stallings, Fifth Edition 2005, Pearson Education/PHI
2. Operating System A Design Approach, Crowley, TMH.
3. Modern Operating Systems, Andrew S. Tanenbaum, 2nd Edition, Pearson/PHI
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals - The New Frontiers, U. Vahalia, Pearson Education.

Dr. Ch. Subbalakshmi
Chairman-BOS

Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee

Mr. Roop Kumar Raju
Member,BOS

Dr. K Venkata Rao
Member,BOS

Dr. Rishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. J. Thariq Hussan
Member,BOS

Mr. K. Gopi
Member,BOS

Mr. V. Devasekhar
Member,BOS

DATABASE MANAGEMENT SYSTEMS

B.Tech. II Year II Sem.

L T P C
3 0 0 3

Prerequisites: A course on “Data Structures”.

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and

EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery

with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM),
B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition
2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7thEdition.
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C. J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

Dr. Ch. Subbalakshmi
Chairman-BOS

Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee

Mr. Roop Kumar Raju
Member,BOS

Dr. K Venkata Rao
Member,BOS

Dr. Rishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. I. Thariq Hussan
Member,BOS

Mr. B.Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

SOFTWARE ENGINEERING

B.Tech. II Year II Sem.

L T P C
3 0 0 3

Course Objectives

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

- Ability to translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths. **A Generic view of process:** Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI). **Process models:** The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model. **Creating an architectural design:** software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging.

Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT - V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM. **Quality Management:** Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.
2. Software Engineering- Sommerville, 7th edition, Pearson Education.

REFERENCE BOOKS:

1. The unified modeling language user guide Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson Education.
2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

OPERATING SYSTEMS LAB

B.Tech. II Year II Sem.

L T P C
0 0 2 1

Prerequisites: A course on “Programming for Problem Solving”, A course on “Computer Organization and Architecture”.

Co-requisite: A course on “Operating Systems”.

Course Objectives:

- To provide an understanding of the design aspects of operating system concepts through simulation
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
- Able to implement C programs using Unix system calls

List of Experiments:

1. Write C programs to simulate the following CPU Scheduling algorithms a) FCFS b) SJF c) RoundRobin d) priority
2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
4. Write a C program to implement the Producer – Consumer problem using semaphores using UNIX/LINUX system calls.
5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs c) Message Queues d) Shared Memory
6. Write C programs to simulate the following memory management techniques a) Paging b) Segmentation
7. Write C programs to simulate Page replacement policies a) FCFS b) LRU c) Optimal

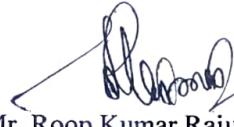
TEXT BOOKS:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems – Internals and Design Principles, William Stallings, Fifth Edition– 2005, Pearson Education/PHI
2. Operating System - A Design Approach-Crowley, TMH.
3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

Dr. Ch. Subbalakshmi
Chairman-BOS


Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee

Mr. Roop Kumar Raju
Member,BOS

Dr. K Venkata Rao
Member,BOS

Dr. Rishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. A. Thariq Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

DATABASE MANAGEMENT SYSTEMS LAB

B.Tech. II Year II Sem.

**L T P C
0 0 2 1**

Co-requisites: "Database Management Systems"

Course Objectives:

- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes:

- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:

1. Concept design with E-R Model
2. Relational Model
3. Normalization
4. Practicing DDL commands
5. Practicing DML commands
6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)
B. Nested, Correlated subqueries
7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
8. Triggers (Creation of insert trigger, delete trigger, update trigger)
9. Procedures
10. Usage of Cursors

TEXT BOOKS:

1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill, 3rd Edition
2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C.J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

Dr. Ch. Subbalakshmi
Chairman-BOS

Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee

Mr. Roop Kumar Raju
Member,BOS

Dr. K Venkata Rao
Member,BOS

Dr. Rishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. I. Thariq Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

B.Tech. II Year II Sem.

**L T P C
0 0 2 1**

FULL STACK DEVELOPMENT

PREREQUISITES

Object Oriented Programming through Java, HTML Basics

COURSE OBJECTIVES

- To implement the static web pages using HTML and do client side validation using JavaScript.
- To design and work with databases using Java
- To develop an end to end application using java full stack.
- To introduce Node JS implementation for server side programming.
- To experiment with single page application development using React.

COURSE OUTCOMES

At the end of the course, the student will be able to,

CO1: Build a custom website with HTML, CSS, and Bootstrap and little JavaScript.
CO2: Demonstrate Advanced features of JavaScript and learn about JDBC
CO3: Develop Server-side implementation using Java technologies like
CO4: Develop the server-side implementation using Node JS.
CO5: Design a Single Page Application using React.

EXERCISES

1. Build a responsive web application for shopping cart with registration, login, catalog and cart pages using CSS3 features, flex and grid.
2. Make the above web application responsive web application using Bootstrap framework.
3. Use JavaScript for doing client-side validation of the pages implemented in experiment 1 and experiment 2.
4. Explore the features of ES6 like arrow functions, callbacks, promises, async/await. Implement an application for reading the weather information from openweathermap.org and display the information in the form of a graph on the web page.
5. Develop a java standalone application that connects with the database (Oracle / mySql) and perform the CRUD operation on the database tables.
6. Create an xml for the bookstore. Validate the same using both DTD and XSD.
7. Design a controller with servlet that provides the interaction with application developed in experiment 1 and the database created in experiment 5.
8. Maintaining the transactional history of any user is very important. Explore the various session tracking mechanism (Cookies, HTTP Session)
9. Create a custom server using http module and explore the other modules of Node JS like OS, path, event.
10. Develop an express web application that can interact with REST API to perform CRUD operations on student data. (Use Postman)
11. For the above application create authorized end points using JWT (JSON Web Token).
12. Create a react application for the student management system having registration, login, contact, about pages and implement routing to navigate through these pages.

13. Create a service in react that fetches the weather information from openweathermap.org and the display the current and historical weather information using graphical representation using chart.js
14. Create a TODO application in react with necessary components and deploy it into github.

REFERENCE BOOKS

1. Jon Duckett, Beginning HTML, XHTML, CSS, and JavaScript, Wrox Publications, 2010
2. Bryan Basham, Kathy Sierra and Bert Bates, Head First Servlets and JSP, O'Reilly Media, 2nd Edition, 2008.
3. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, A Press.

Dr. Ch. Subbalakshmi
Chairman-BOS

Dr. A. Damodaram
JNTUH Nominee

Dr. G. Narsimha
Academic Council Nominee

Dr. Aruna Malapati
Academic Council Nominee

Mr. Roop Kumar Raju
Member,BOS

Dr. K Venkata Rao
Member,BOS

Dr. Rishi Sayal
Member,BOS

Dr. J Rajeshwar
Member,BOS

Dr. S. Madhu
Member,BOS

Dr. M. I. Thariq Hussan
Member,BOS

Mr. B. Srinivasa Rao
Member,BOS

Mr. V. Devasekhar
Member,BOS

GURU NANAK INSTITUTIONS TECHNICAL CAMPUS

(An UGC Autonomous Institution - Affiliated to JNTUH)

Ibrahimpatnam, Ranga Reddy (District), Hyderabad - 501 506.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Regulation – R 22

COURSE STRUCTURE FOR SERVICE DEPARTMENTS

(Applicable from the batch admitted during 2022-23 onwards)

II Year Semester 1

(For branches CSE,CSC,CSD & EEE)

S. No	Course Code	Course Title	Hours per Week			Credits
			L	T	P	
1		Digital Electronics	3	0	0	3

(For branches IT,AIDS,CSO)

S. No	Course Code	Course Title	Hours per Week			Credits
			L	T	P	
1		Digital Electronics	3	0	0	3
		Digital Electronics Laboratory	0	0	2	1

(For branch EEE)

S. No	Course Code	Course Title	Hours per Week			Credits
			L	T	P	
1		Analog Electronic Circuits	3	0	0	3
2		Analog Electronic Circuits Laboratory	0	0	2	1

Dr.S.Maheswara Reddy
HOD & BOS Chairman

Dr. P. Chandrasekhar Reddy
JNTUH Nominee

Dr. Manjunath Chari
GITAM University

Mr. T. S. Rama Krishna
DDG(E), Doordarshan, Hyd

Dr. Ibrahim Patel
Academic Council
Nominee, BVRIT

Dr. Vikas Maheswari
Prof & HOD, Member

Dr. B. Anitha
BOS Coordinator

Dr. Sandeep Patil
Alumni Member

DIGITAL ELECTRONICS

B.Tech. II Year I Sem.

L T P C

3 0 0 3

Course Objectives: This course aims at a thorough understanding of the binary number system, logic gates, combination logic and synchronous and asynchronous logic.

UNIT - I:

BOOLEAN ALGEBRA AND LOGIC GATES: Digital Systems, Binary Numbers, Octal and Hexadecimal Numbers Number base conversions, signed binary numbers, complements, One's and Two's complement arithmetic, Binary codes (BCD, Gray, Xcess-3)

Boolean Algebra: Basic theorems and properties, canonical and standard forms, Digital logic gates, and Examples of IC gates

UNIT - II:

GATE-LEVEL MINIMIZATION: Standard representation of a logic function, The K-map method, Don't-care conditions, Three-variable, Four-variable K-maps, Q-M method of function realization, SOP & POS simplifications, implementation of a Boolean function using Universal gates.

Exclusive – OR function.

UNIT - III:

COMBINATIONAL LOGIC: Combinational Circuits, Binary Adder-Subtractor, 2-bit Binary multiplier, 2-bit magnitude comparator, Decoders, Encoders, Multiplexer,

Demultiplexer, Code Converters (Binary to Gray, Gray to Binary, Xcess-3 to BCD, BCD to Xcess-3)

UNIT - IV:

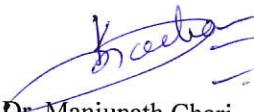
SEQUENTIAL LOGIC CIRCUITS: Sequential circuits, latches, introduction Flip-Flops, SR, JK, D & T flipflops, state Reduction and Assignment, Registers, shift Registers, Synchronous and Asynchronous Counters, Ring Counter, Johnson Counter.

UNIT – V:

SEMICONDUCTOR MEMORIES AND PROGRAMMABLE LOGIC DEVICES: Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read-only memory (ROM), ROM types, Read and write memory (RAM) types, Programmable logic array, Programmable array logic, Sequential Programmable Devices.

TEXTBOOKS:

1. Digital Design – Third Edition, M. Morris Mano, Pearson Education/PHI.
2. Digital Principles and Applications Albert Paul Malvino Donald P. Leach TATA McGraw Hill Edition.
3. Fundamentals of Logic Design, Roth, 5th Edition, Thomson.
4. R. P Jain, Modern Digital Electronics, McGraw Hill Education


REFERENCE BOOKS:

1. Switching and Finite Automata Theory by Zvi. Kohavi, Tata McGraw Hill.

2. Switching and Logic Design, C.V.S. Rao, Pearson Education
3. Digital Principles and Design – Donald D.Givone, Tata McGraw Hill, Edition.
4. Fundamentals of Digital Logic and Microcomputer Design, 5TH Edition, M. Rafiquzzaman John Wiley

Dr. S. Maheswara Reddy
HOD & BOS Chairman

Dr. P. Chandrasekhar Reddy
JNTUH Nominee

Dr. Manjunath Chari
GITAM University

Mr. T. S. Rama Krishna
DDG(E), Doordarshan, Hyd

Dr. Ibrahim Patel
Academic Council
Nominee, BVRIT

Dr. Vikas Maheswari
Prof & HOD, Member

Dr. B. Anitha
BOS Coordinator

Dr. Sandeep Patil
Alumni Member

DIGITAL ELECTRONICS LAB

B.Tech. II Year I Sem

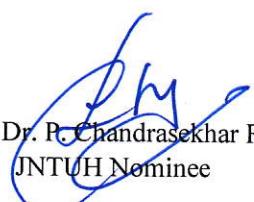
L T P C

0 0 2 1

Prerequisites: Analog Electronics & Digital Electronics

Course Objectives:

- To learn basic techniques for the design of digital circuits and number conversion systems.
- To implement simple logical operations using combinational logic circuits.
- To design combinational logic circuits, sequential logic circuits.

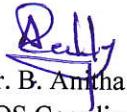

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand the working of logic families and logic gates.
- Design and implement Combinational and Sequential logic circuits.
- Analyze different types of semiconductor memories.

List of Experiments:

1. Realization of Boolean Expressions using Gates
2. Design and realization logic gates using universal gates
3. Generation of clock using NAND/NOR gates
4. Design a 4 – bit Adder / Subtractor
5. Design and realization a 4 – bit gray to Binary and Binary to Gray Converter
6. Design and realization of a 4-bit pseudo random sequence generator using logic gates.
7. Design and realization of an 8-bit parallel load and serial out shift register using flip-flops.
8. Design and realization Asynchronous and Synchronous counters using flip-flops
9. Design and realization 8x1 using 2x1 Mux
10. Design and realization 2-bit comparator
11. Verification of truth tables and excitation tables
12. Realization of logic gates using DTL, TTL, ECL, etc.,

Dr. S. Maheswara Reddy
HOD & BOS Chairman



Dr. P. Chandrasekhar Reddy
JNTUH Nominee

Dr. Manjunath Chari
GITAM University

Mr. T. S. Rama Krishna
DDG(E), Doordarshan, Hyd

Dr. Ibrahim Patel
Academic Council
Nominee, BVRIT

Dr. Vikas Maheswari
Prof & HOD, Member

Dr. B. Amitha
BOS Coordinator

Dr. Sandeep Patil
Alumni Member

ANALOG ELECTRONIC CIRCUITS

B.Tech. II Year I Sem.

L T P C
3 0 0 3

Course Objectives:

- To introduce components such as diodes, BJTs and FETs their switching characteristics, applications
- Learn the concepts of high frequency analysis of transistors.
- To give understanding of various types of basic and feedback amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.
- To introduce the basic building blocks of linear integrated circuits.
- To introduce the concepts of waveform generation and introduce some special function ICs.

Course Outcomes: At the end of this course, students will be able to

- Know the characteristics, utilization of various components.
- Understand the biasing techniques
- Design and analyze various rectifiers, small signal amplifier circuits.
- Design sinusoidal and non-sinusoidal oscillators.
- Designs OP-AMP based circuits with linear integratedcircuits.

UNIT-I:

Diode and Bipolar Transistor Circuits: P-N junction diode, I-V characteristics of a diode; review of half-wave and full-wave rectifiers, clamping and clipping circuits. Input output characteristics of BJT in CB, CE, CC configurations, biasing circuits, Load line analysis, common-emitter, common-base and common collector amplifiers;Small signal equivalent circuits,

UNIT-II:

FET Circuits: FET Structure and VI Characteristics, MOSFET structure and I-V characteristics. MOSFET as a switch. small signal equivalent circuits - gain, input and output impedances, small-signal model and common-source, common-gate and common-drain amplifiers, trans conductance.

UNIT-III:

Multi-Stage and Power Amplifiers: Direct coupled and RC Coupled multi-stage amplifiers; Differential Amplifiers, Power amplifiers - Class A, Class B, Class C

UNIT-IV:

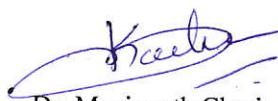
Feedback Amplifiers: Concepts of feedback – Classification of feedback amplifiers – General characteristics of Negative feedback amplifiers – Effect of Feedback on Amplifier characteristics – Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations – Simple problems.

Oscillators: Condition for Oscillations, RC type Oscillators-RC phase shift and Wien-bridge Oscillators, LC type Oscillators –Generalized analysis of LC Oscillators, Hartley and Colpitts Oscillators.

UNIT-V:

Operational Amplifiers: Ideal op-amp, Output offset voltage, input bias current, input offset current, slew rate, gain bandwidth product, Inverting and non-inverting amplifier, Differentiator, integrator, Square-wave andtriangular- wave generators.

TEXT BOOKS:


1. Integrated Electronics, Jacob Millman, Christos C Halkias, McGraw Hill Education, 2nd edition 2010
2. Op-Amps & Linear ICs – Ramakanth A. Gayakwad, PHI, 2003.

REFERENCE BOOKS:

1. Electronic Devices Conventional and current version -Thomas L. Floyd 2015, pearson.
2. J. Millman and A. Grabel, "Microelectronics", McGraw Hill Education, 1988.
3. P. Horowitz and W. Hill, "The Art of Electronics", Cambridge University Press, 1989.
4. P. R. Gray, R. G. Meyer and S. Lewis, "Analysis and Design of Analog Integrated Circuits", John Wiley & Sons, 2001.

Dr. S. Maheswara Reddy
HOD & BOS Chairman

Dr. P. Chandrasekhar Reddy
JNTUH Nominee

Dr. Manjunath Chari
GITAM University

Mr. T. S. Rama Krishna
DDG(E), Doordarshan, Hyd

Dr. Ibrahim Patel
Academic Council
Nominee, BVRIT

Dr. Vikas Maheswari
Prof & HOD, Member

Dr. B. Anitha
BOS Coordinator

Dr. Sandeep Patil
Alumni Member

ANALOG ELECTRONIC CIRCUITS LABORATORY

B.Tech. II Year I Sem.

L T P C

0 0 2 1

Prerequisites: Analog Electronic Circuits

Course Objectives:

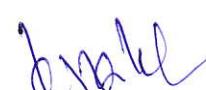
- To introduce components such as diodes, BJTs and FETs their switching characteristics, applications
- Learn the concepts of high frequency analysis of transistors.
- To give understanding of various types of basic and feedback amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.
- To introduce the basic building blocks of linear integrated circuits.
- To introduce the concepts of waveform generation and introduce some special function ICs.

Course Outcomes: At the end of this course, students will demonstrate the ability to

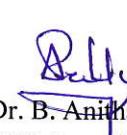
- Know the characteristics, utilization of various components.
- Understand the biasing techniques
- Design and analyze various rectifiers, small signal amplifier circuits.
- Design sinusoidal and non-sinusoidal oscillators.
- Design OP-AMP based circuits with linear integrated circuits.

List of Experiments:

1. Draw the VI Characteristics of given PN Junction diode. Determine the Static and Dynamic resistance of the Diode.
2. Determine the Ripple factor, %Regulation PIV and TUF of the given Rectifier with & without filter.
3. Obtain the I/O Characteristics of CE configurations of BJT. Calculate h-parameters from the Characteristics.
4. Obtain the I/O Characteristics of CB configurations of BJT. Calculate h-parameters from the Characteristics.
5. Obtain the I/O Characteristics of CC configurations of BJT. Calculate h-parameters from the Characteristics.
6. Obtain the Drain and Transfer characteristics of CD,CS configuration of JFET. Calculate gm , rd from the Characteristics


7. Adder and Subtractor using Op Amp.
8. Inverting and Non-inverting Amplifiers using Op Amps
9. Adder and Subtractor using Op Amp
10. Integrator Circuit using IC 741.
11. Differentiator circuit using Op Amp.
12. Current Shunt Feedback amplifier
13. Design an RC phase shift oscillator circuit and derive the gain condition for oscillations practically for given frequency.
14. Design a Colpitts oscillator circuit for the given frequency and draw the output waveform.
15. Design transformer coupled class A power amplifier and draw the input and output waveforms, find its efficiency

Dr. S. Maheswara Reddy
HOD & BOS Chairman



Dr. P. Chandrasekhar Reddy
JNTUH Nominee

Dr. Manjunath Chari
GITAM University

Mr. T. S. Rama Krishna
DDG(E), Doordarshan, Hyd

Dr. Ibrahim Patel
Academic Council
Nominee, BVRIT

Dr. Vikas Maheswari
Prof & HOD, Member

Dr. B. Anita
BOS Coordinator

Dr. Sandeep Patil
Alumni Member

Approved by
AICTE - New Delhi

Affiliated to
JNTU - Hyderabad

Accredited by
National Assessment and
Accreditation Council

Accredited by
National Board of
Accreditation

AUTONOMOUS
under Section 2 (I) & 12 (b) of
University Grants Commission Act

R22 B. Tech

Syllabus

L T P C
3 1 0 4

B. Tech II Year I-Semester

COMPUTER ORIENTED STATISTICAL METHODS (Theory)

Common to CSE, CSE (Data Science), CSE(Cyber Security)

Pre-requisites: Mathematics courses of first year of study.

Course Objectives: To learn

- The theory of Probability and random variables.
- Mathematical Expectation and Probability distributions.
- Fundamental Sampling Distributions.
- The sampling theory, testing of hypothesis and making statistical inferences.
- Stochastic process and Markov chains.

Course outcomes: After learning the contents of this paper the student must be able to

- Apply the concepts of probability and random variables.
- Discuss mathematical expectations and discrete distributions.
- Evaluate the statistical parameters of continuous and sampling distributions.
- Apply concept of estimation and testing of hypothesis and making statistical inferences on data set.
- Understand the basic concepts of Stochastic Processes and Markov Chains.

Raju

1). Dr. N. Raju
GNITC, Chairman, BOS

SV
2). Dr. V. Srinivasa Kumar
JNTUH Nominee

DK
3). Dr. N. Kishan
Academic Council Nominee

BSR
4). Dr. B. Surendher Reddy
Academic Council Nominee

SP
5). Dr. V. Shyam Prasad
GNITC, Member

GM Reddy
6). Dr. G. Mahender Reddy
GNITC, Member

TVL
7). Ms. T. Vijaya Lakshmi
GNITC, Member

Approved by
AICTE - New Delhi

Affiliated to
JNTU - Hyderabad

Accredited by
National Assessment and
Accreditation Council

Accredited by
National Board of
Accreditation

AUTONOMOUS
under Section 2 (l) & 12 (b) of
University Grants Commission Act

UNIT - I: Probability

10 L

Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Baye's Rule,

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions.

UNIT - II: Expectation and discrete distributions

10 L

Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev's theorem.

Discrete Probability Distributions: Binomial Distribution, Poisson distribution.

UNIT - III: Continuous and Sampling Distributions

10 L

Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial Distributions.

Fundamental Sampling Distributions: Random Sampling, Some Important Statistics, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, *t*-Distribution, *F*-Distribution.

Raju

1). Dr. N. Raju
GNITC, Chairman, BOS

2). Dr. V. Srinivasa Kumar
JNTUH Nominee

3). Dr. N. Kishan
Academic Council Nominee

4). Dr. B. Surendher Reddy
Academic Council Nominee

Shyam

5). Dr. V. Shyam Prasad
GNITC, Member

G. Mahender Reddy

6). Dr. G. Mahender Reddy
GNITC, Member

PL

7). Ms. T. Vijaya Lakshmi
GNITC, Member

UNIT - IV: Sample Estimation & Tests of Hypotheses

10L

Introduction, Statistical Inference, Classical Methods of Estimation, Single Sample: Estimating the mean, standard error of a point estimate, prediction interval. Two sample: Estimating the difference between two means, Single sample: Estimating a proportion, Two samples: Estimating the difference between two proportions, Two samples: Estimating the ratio of two variances.

Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Single sample: Tests concerning a single mean, Two samples: tests on two means, One sample: test on a single proportion. Two samples: tests on two proportions, Two- sample tests concerning variances.

UNIT-V: Stochastic Processes and Markov Chains

8L

Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, n-step transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics For Engineers & Scientists, 9th Ed. Pearson Publishers.
2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.
3. S. D. Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi.

REFERENCE BOOKS:

1. T.T. Soong, Fundamentals of Probability and Statistics For Engineers, John Wiley & Sons, Ltd, 2004.
2. Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, 5th Edition, Academic Press.
3. Miller and Freund's, Probability and Statistics for Engineers, 8th Edition, Pearson Educations.
4. P N Arora, Sumeet Arora, S.Arora , Comprehensive Statistical Methods, 4th Edition , S. Chand & Company Pvt.Ltd,2012.

Raju

1). Dr. N. Raju
GNITC, Chairman, BOS

Srinivas Kumar
2). Dr. V. Srinivasa Kumar
JNTUH Nominee

—
3). Dr. N. Kishan
Academic Council Nominee

B. Surendher Reddy
4). Dr. B. Surendher Reddy
Academic Council Nominee

Shyam
5). Dr. V. Shyam Prasad
GNITC, Member

G. Mahender Reddy
6). Dr. G. Mahender Reddy
GNITC, Member

T. Vijaya Lakshmi
7). Ms. T. Vijaya Lakshmi
GNITC, Member

GURU NANAK INSTITUTIONS TECHNICAL CAMPUS (AUTONOMOUS)

Subject Code: 18MC0EN02

L T P C
0 0 2 0

GENDER SENSITIZATION LAB

(An Activity-based Course)

B.Tech (Common to All Branches)

Objectives of the Courses:

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

GURU NANAK INSTITUTIONS TECHNICAL CAMPUS (AUTONOMOUS)

Syllabus:

Unit -I

Understanding Gender

Gender: Why Should We Study It? (Towards a World of Equals: Unit -1)

Socialization: Making Women, Making Men (Towards a World of Equals: Unit -2)

Introduction. Preparing for Womanhood. Growing up Male. First lessons in Caste. Different Masculinities.

Unit -II

Gender And Biology

Missing Women: Sex Selection and Its Consequences (Towards a World of Equals: Unit -4)

Declining Sex Ratio. Demographic Consequences.

Gender Spectrum: Beyond the Binary (Towards a World of Equals: Unit -10)

Two or Many? Struggles with Discrimination.

Unit -III

Gender And Labour

Housework: the Invisible Labour (Towards a World of Equals: Unit -3)

“My Mother doesn’t Work.” “Share the Load.”

Women’s Work: Its Polities and Economics (Towards a World of Equals: Unit -7)

Fact and Fiction. Unrecognized and Unaccounted work. Additional Reading: Wages and Conditions of Work.

Unit -IV

Issues of Violence

Sexual Harassment: Say No! (Towards a World of Equals: Unit -6)

GURU NANAK INSTITUTIONS TECHNICAL CAMPUS (AUTONOMOUS)

Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: "Chupulu".

Domestic Violence: Speaking Out (*Towards a World of Equals*: Unit -8)

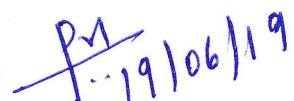
Is Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Additional Reading: New Forums for Justice.

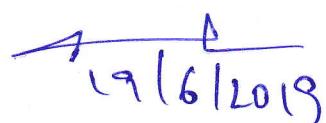
Thinking about Sexual Violence (*Towards a World of Equals*: Unit -11)

Blaming the Victim-“I Fought for my Life....” - Additional Reading: The Caste Face of Violence.

Unit -V

Gender: Co-Existence


Just Relationships: Being Together as Equals (*Towards a World of Equals*: Unit -12)


Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Additional Reading: Rosa Parks-The Brave Heart.

Members of Board of Studies Present:

1. Dr. G. Anjaneyulu, Chairman (BOS)
Professor of English, GNITC(A)
2. Dr. V. Parvathi, JNTUH Nominee
Professor of English, JNTUH (A)
3. Dr. N.V.S.N Lakshmi,
Professor of English, JNTUH (A) Subject Expert
4. Dr. Jayashree Mohan Raj, Subject Expert
Professor of English
EFLU, Hyderabad
5. Dr. M. Sridhar, Member (BOS)
Associate Professor of English, GNITC(A)
6. Mrs. B. Priti, Member (BOS)
Associate Professor of English, GNITC(A)

Signature

GURU NANAK INSTITUTIONS TECHNICAL CAMPUS (AUTONOMOUS)

Essential Reading: All the Units in the Textbook, “*Towards a World of Equals: A Bilingual Textbook on Gender*” written by A.Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu.

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

Reference Books:

1. Sen, Amartya. “More than One Million Women are Missing.” *New York Review of Books* 37.20 (20 December 1990). Print. ‘*We Were Making History...’ Life Stories of Women in the Telangana People’s Struggle*. New Delhi: Kali for Women, 1989.
2. Tripti Lahiri. “By the Numbers: Where Indian Women Work.” *Women’s Studies Journal* (14 November 2012) Available online at: http://blogs.wsj.com/India_real_time/2012/11/14/by-the-numbers-where-Indian-women-work/
3. K. Satyanarayana and Susie Tharu (Ed.) *Steel Nibs Are Sprouting: New Dalit Writing From South India, Dossier 2: Telugu And Kannada* http://harpercollins.co.in/BookDetail.asp?Book_Code=3732
4. Vimala. “Vantillu (The Kitchen)”. *Women Writing in India: 600 BC to the Present. Volume II: The 20th Century*. Ed. Susie Tharu and K. Lalita. Delhi: Oxford University Press, 1995. 599-601.
5. Shatrughna, Veena et al. *Women’s Work and its Impact on Child Health and Nutrition*, Hyderabad, National Institute of Nutrition, Indian Council of Medical Research. 1993.
6. Stree Shakti Sanghatana. “*We Were Making History’ Life Stories of Women in the Telangana People’s Struggle*. New Delhi: Kali for Women, 1989.
7. Menon, Nivedita. *Seeing like a Feminist*. New Delhi: Zubaan-Penguin Books, 2012
8. Jayaprabha, A. “Chupulu (Stares)”. *Women Writing in India: 600BC to the Present. Volume II: The 20th Century* Ed. Susie Tharu and K. Lalita. Delhi: Oxford University Press, 1995. 596-597.
9. Javeed, Shayan and Anupam Manuhaar. “Women and Wage Discrimination in India: A Critical Analysis.” *International Journal of Humanities and Social Science Invention* 2.4(2013)
10. Gautam, Liela and Gita Ramaswamy. “A ‘conversation’ between a Daughter and a Mother.” *Broadsheet on Contemporary Politics*. Special Issue on *Sexuality and Harassment: Gender Politics on Campus Today*. Ed. Madhumeeta Sinha and Asma Rasheed. Hyderabad: Anveshi Research Center for Women’s Studies, 2014.

GURU NANAK INSTITUTIONS TECHNICAL CAMPUS (AUTONOMOUS)

11. Abdulali Sohaila. "I Fought For My Life...and Won." Available online at: <http://www.thealternative.in/lifestyle/i-fought-for-my-life-and-won-sohaila-abdulali/>
12. Jeganathan Pradeep, Partha Chatterjee (Ed). "Community, Gender and Violence Subaltern Studies XI". Permanent Black and Ravi Dayal Publishers, New Delhi, 2000
13. K. Kapadia. The Violence of Development: The Politics of Identity, Gender and Social Inequalities in India. London: Zed Books, 2002
14. S. Benhabib. Situating the Self: Gender, Community, and Postmodernism in Contemporary Ethics, London: Routledge, 1992
15. Virginia Woolf. A Room of One's Own. Oxford: Black Swan. 1992.
- T. Banuri and M. Mahmood, Just Development: Beyond Adjustment with a Human Face, Karachi: Oxford University Press, 1997

Members of Board of Studies Present:

Dr. G. Anjaneyulu, Chairman (BOS)
 Professor of English, GNITC

Dr. V. Parvathi, JNTUH Nominee
 Professor of English, JNTUH (A)

Dr. N.V.S.N Lakshmi,
 Professor of English
 JNTUH (A) Subject Expert

Dr. Jayashree Mohan Raj, Subject Expert
 Professor of English
 EFLU, Hyderabad

Dr. M. Sridhar, Member (BOS)
 Associate Professor of English, GNITC

Mrs. B. Priti, Member (BOS)
 Associate Professor of English, GNITC

Signature

BUSINESS ECONOMICS AND FINANCIAL ANALYSIS (22SS0MB01)

B.Tech. II Year II Sem. (IT, CSE & DS)

L T P C
3 0 0 3

Course Objective: To learn the basic business types, Impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

Unit – I: Introduction to Business and Economics

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply and Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT - II: Demand and Supply Analysis

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function and Law of Supply.

UNIT - III: Production, Cost, Market Structures & Pricing

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition. **Pricing:** Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - IV: Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts(Simple Problems).

UNIT - V: Financial Ratios Analysis: Concept of Ratio Analysis, Importance and Types of Ratios, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios – Analysis and Interpretation (simple problems).

TEXT BOOKS:

1. D. D. Chaturvedi, S. L. Gupta, Business Economics - Theory and Applications, International Book House Pvt. Ltd. 2013.
2. Dhanesh K Khatri, Financial Accounting, Tata Mc -Graw Hill, 2011.
3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata McGraw Hill Education Pvt. Ltd. 2012.

REFERENCE BOOKS:

1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
2. S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

Dr.Anand Bethapudi
Chairman - BOS

Dr.Sindhu
JNTUH Nominee

Dr.D.Sree Ramulu
Academic Council
Nominee - 1

Dr. Mary Jessica
Academic Council
Nominee - 2

Dr.A.V.Vedpuriswar
Industry Nominee

Dr.Ravi Sanker
Kummeta
Member - BOS

Mr.C.Prakash Reddy
Member - BOS

Mr.K.Sandeep Reddy
Member - BOS

Ms.B.Soujanya
Member - BOS

GURU NANAK INSTITUTIONS TECHNICAL CAMPUS (AUTONOMOUS)

Subject code: 18MC0EN01

L T P C
3 0 0 0

School of Engineering
Constitution of India
(Mandatory Course)
B.Tech. (Common to all Branches)

Course Objective:

The course is structured and taught to enable a non social science students to appreciate and understand the evolution of the institutions and dynamics of functioning of the institutions. This constitutes itself as political process and affects and effects the individual and the society in its life as a person and citizen and develops and forms an attitude towards the political system. The main aim is to help individuals develop into responsible, critical, reflective and productive citizens.

Course outcome:

It facilitates the understanding of various Government of Indian acts their provisions and reforms. It helps to know the salient features in making of Indian constitution and appreciate the constitutional principles and institutional arrangements and makes them learn about the fundamental rights and duties and the directive principle of state policy. It inculcates skills to evaluate the evolution, functioning and consequences of political parties in India and to identify how electoral rules and procedure in India effect election outcomes.

GURU NANAK INSTITUTIONS TECHNICAL CAMPUS (AUTONOMOUS)

Syllabus:

Unit- I Evolution of Indian Constitution

1. Constitutionalism
2. 1909, 1919 and 1935 Acts
3. Constituent Assembly- Composition and Functions

UNIT-II Major features and Provisions

1. Salient features
2. Fundamental Rights and Duties
- 3 Directive Principles of State Policy

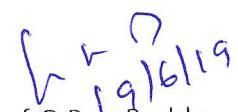
Unit-III Constitutional Institutions

1. Union Government-Executive (President, Prime Minister and Council of Ministers)
 - Legislature (Parliament-Loksabha, Rajyasabha)
 - Judiciary- Supreme Court and High Court
2. State Government-Executive (Governor, Chief Minister and Council of Ministers)
 - Legislature (Legislative Assembly and Legislative Council)
3. Panchayat Raj institutions and Urban local bodies

Unit- IV. Federalism

- Union – State relations(Legislative, Administrative and Financial)
- Politics of federal governance and Frictions in Federal polity

Unit-V- Political Process


1. Political Parties-National and Regional
2. Pressure groups
3. Civil Society and Popular movements
4. Election Commission of India

Reading List:

1. D. D. Basu (2015) Introduction to the Constitution of India, New Delhi: LexisNexis.
2. Peu Gosh(2018) Indian Government and Politics, Delhi, PHI Pvt Ltd
3. Granville Austin (1999), The Indian Constitution – Corner Stone of a Nation, New Delhi: Oxford.
4. P.M.Bakshi (2018),The Constitution of India-LexisNexis ,Delhi

 Dr. G. Anjaneyulu
 Chairperson (BOS) GNITC

 Dr. V. Parvathi
 University Nominee (JNTUH)

 Prof. G. RamReddy
 Subject Expert (OU)

 Dr. Ch. Venkateswarlu
 Subject Expert (OU)